Nondestructive Determination of Leaf Nitrogen Content in Corn by Hyperspectral Imaging Using Spectral and Texture Fusion
نویسندگان
چکیده
The nitrogen content is an important indicator affecting corn plants’ growth status. Most of the standard hyperspectral imaging-based techniques for nondestructive detection crop use a single feature as input variable model, which reduces generalization ability prediction model. To this end, model leaves based on fusion image and spectral features proposed. In study, at modulation stage were studied, samples with different levels numbered, their data in wavelength range 400~1100 nm collected. average spectrum models was used valid information. First-order derivatives, normal variables transformation (SNV), Savitzky-Golay (S-G) smoothing, normalization selected to preprocess features. CARS-SPA algorithm screen sensitive variables. gray level co-currency matrix (GLCM) chosen extract texture test samples. Corn leaf fused modeled target Partial least squares regression (PLSR) support vector machine (SVR) predict leaves’ content. results showed that spectral-based improved performance some extent compared univariate models. PLSR predicted best results, RP2 RMSEP 0.987 0.047. This method provides reliable theoretical basis technical developing accurate leaves.
منابع مشابه
Nondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet
Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...
متن کاملNondestructive Estimation of Moisture Content, pH and Soluble Solid Contents in Intact Tomatoes Using Hyperspectral Imaging
The objective of this study was to develop a nondestructive method to evaluate chemical components such as moisture content (MC), pH, and soluble solid content (SSC) in intact tomatoes by using hyperspectral imaging in the range of 1000–1550 nm. The mean spectra of the 95 matured tomato samples were extracted from the hyperspectral images, and multivariate calibration models were built by using...
متن کاملNondestructive and rapid determination of lignocellulose components of biofuel pellet using online hyperspectral imaging system
Background In the pursuit of sources of energy, biofuel pellet is emerging as a promising resource because of its easy storage and transport, and lower pollution to the environment. The composition of biomass has important implication for energy conversion processing strategies. Current standard chemical methods for biomass composition are laborious, time-consuming, and unsuitable for high-thro...
متن کاملdetermination of olanzapine and thiourea using electrodes modified by dna and film of copper-cobalt hexacyanoferrate & investigation of electro-oxidation of some catechol derivatives in the presence of 4-phenylsemicarbazid
چکیده هدف از این کار بررسی الکترواکسیداسیون کتکول و مشتقات آن در حضور 4-فنیل سمی کاربامازید بوده است اکسیداسیون کتکولها ترکیبات نا پایدار کینونها را تولید می کنند که این ترکیبات می تواند در واکنش مایکل بعنوان پذیرنده نوکلئوفیل عمل نمایند. در ادامه اکسایش کتکولهای (a-c1) را درحضور 4-فنیل سمی کاربامازید در محلول آب/استونیتریل (90/10)بوسیله ولتامتری چرخه ای و کولن متری در پتانسیل ثابت مورد بررسی ...
15 صفحه اولSegmentation of Hedges on CASI Hyperspectral Images by Data Fusion from Texture, Spectral and Shape Analysis
The study figures out the potential of CASI airborne hyperspectral imagery for the fine segmentation and characterization of small size landscape units, the hedges, essential for hydrologists and landscape planners. The segmentation strategy consists in computing every hedge discriminating feature : radiometry, texture and linear shape. Original methods taking into consideration the full spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13031910